Gene ontology annotations for ACTB |
|
Experiment description of studies that identified ACTB in exosomes |
1 |
Experiment ID |
79 |
MISEV standards |
✘
|
Biophysical techniques |
✔
CD81|MHCII
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
20458337
|
Organism |
Homo sapiens |
Experiment description |
MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis - Sample 1 |
Authors |
"Buschow SI, van Balkom BW, Aalberts M, Heck AJ, Wauben M, Stoorvogel W." |
Journal name |
ICB
|
Publication year |
2010 |
Sample |
B cells |
Sample name |
RN (HLA-DR15) |
Isolation/purification methods |
Differential centrifugation Sucrose density gradient Immunobeads (MHC Class II) |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry [FT-ICR] Western blotting |
|
|
2 |
Experiment ID |
80 |
MISEV standards |
✘
|
Biophysical techniques |
✔
CD81|MHCII
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
20458337
|
Organism |
Homo sapiens |
Experiment description |
MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis -Sample 2 |
Authors |
"Buschow SI, van Balkom BW, Aalberts M, Heck AJ, Wauben M, Stoorvogel W." |
Journal name |
ICB
|
Publication year |
2010 |
Sample |
B cells |
Sample name |
RN (HLA-DR15) |
Isolation/purification methods |
Differential centrifugation Sucrose density gradient Immunobeads (MHC Class II) |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry [FT-ICR] Western blotting |
|
|
3 |
Experiment ID |
81 |
MISEV standards |
✘
|
Biophysical techniques |
✔
CD81|MHCII
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
20458337
|
Organism |
Homo sapiens |
Experiment description |
MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis - Sample 3 |
Authors |
"Buschow SI, van Balkom BW, Aalberts M, Heck AJ, Wauben M, Stoorvogel W." |
Journal name |
ICB
|
Publication year |
2010 |
Sample |
B cells |
Sample name |
RN (HLA-DR15) |
Isolation/purification methods |
Differential centrifugation Sucrose density gradient Immunobeads (MHC Class II) |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry [FT-ICR] Western blotting |
|
|
4 |
Experiment ID |
76 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
TSG101|GAPDH|HSP90|CD81|CD9|CD63|LAMP1|MHCI
|
Enriched markers |
✔
HSP90B1
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
20224111
|
Organism |
Homo sapiens |
Experiment description |
Proteomics analysis of bladder cancer exosomes. |
Authors |
"Welton JL, Khanna S, Giles PJ, Brennan P, Brewis IA, Staffurth J, Mason MD, Clayton A." |
Journal name |
MCP
|
Publication year |
2010 |
Sample |
Bladder cancer cells |
Sample name |
HT1376 |
Isolation/purification methods |
Differential centrifugation Sucrose density gradient |
Flotation density |
1.10-1.19 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry [MALDI TOF/TOF] Western blotting FACS |
|
|
5 |
Experiment ID |
489 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
Cd9|Cd81|Cd63|Gapdh|Sdcbp|Lamp1|Aqp1|Rab5a|Icam1|Cd82|Itga2b|Tsg101|Lamp2|Rab35|Flot1|Flot2|Cd151|Rab5b|Tfrc|Uchl1
|
Enriched markers |
✔
Canx
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Rattus norvegicus |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
"Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ." |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Bone marrow mesenchymal stem cells |
Sample name |
BMSC - Passage 6 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
6 |
Experiment ID |
490 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
Cd9|Cd81|Cd63|Gapdh|Sdcbp|Lamp1|Aqp1|Rab5a|Icam1|Cd82|Itga2b|Tsg101|Lamp2|Rab35|Flot1|Flot2|Cd151|Rab5b|Tfrc|Uchl1
|
Enriched markers |
✔
Canx
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Rattus norvegicus |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
"Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ." |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Bone marrow mesenchymal stem cells |
Sample name |
BMSC - Passage 7 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
7 |
Experiment ID |
491 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
Cd9|Cd81|Cd63|Gapdh|Sdcbp|Lamp1|Aqp1|Rab5a|Icam1|Cd82|Itga2b|Tsg101|Lamp2|Rab35|Flot1|Flot2|Cd151|Rab5b|Tfrc|Uchl1
|
Enriched markers |
✔
Canx
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Rattus norvegicus |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
"Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ." |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Bone marrow mesenchymal stem cells |
Sample name |
BMSC - Passage 8 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
8 |
Experiment ID |
492 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
Cd9|Cd81|Cd63|Gapdh|Sdcbp|Lamp1|Aqp1|Rab5a|Icam1|Cd82|Itga2b|Tsg101|Lamp2|Rab35|Flot1|Flot2|Cd151|Rab5b|Tfrc|Uchl1
|
Enriched markers |
✔
Canx
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Rattus norvegicus |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
"Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ." |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Bone marrow mesenchymal stem cells |
Sample name |
BMSC - Passage 9 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
9 |
Experiment ID |
19 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✘
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
16302729
|
Organism |
Homo sapiens |
Experiment description |
"Purification, characterization and biological significance of tumor-derived exosomes." |
Authors |
"Koga K, Matsumoto K, Akiyoshi T, Kubo M, Yamanaka N, Tasaki A, Nakashima H, Nakamura M, Kuroki S, Tanaka M, Katano M" |
Journal name |
ACR
|
Publication year |
2005 |
Sample |
Breast cancer cells |
Sample name |
BT-474 MDA-MB-231 |
Isolation/purification methods |
Differential centrifugation Sucrose density gradient Filtration Immunobeads(HER2) |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting FACS |
|
|
10 |
Experiment ID |
65 |
MISEV standards |
✘
|
Biophysical techniques |
✔
HSP60|HSP27|GAPDH|FLOT2
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry Western blotting
|
PubMed ID |
19415654
|
Organism |
Homo sapiens |
Experiment description |
Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7. |
Authors |
"Staubach S, Razawi H, Hanisch FG." |
Journal name |
PROTEOMICS
|
Publication year |
2009 |
Sample |
Breast cancer cells |
Sample name |
MCF-7 |
Isolation/purification methods |
Differential centrifugation Sucrose density gradient |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry [MALDI TOF] Western blotting |
|
|
11 |
Experiment ID |
397 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD9|TSG101|CD63
|
Enriched markers |
✔
GOLGA2|CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
33738083
|
Organism |
Homo sapiens |
Experiment description |
Bioorthogonally surface-edited extracellular vesicles based on metabolic glycoengineering for CD44-mediated targeting of inflammatory diseases |
Authors |
"Lim GT, You DG, Han HS, Lee H, Shin S, Oh BH, Kumar EKP, Um W, Kim CH, Han S, Lee S, Lim S, Yoon HY, Kim K, Kwon IC, Jo DG, Cho YW, Park JH" |
Journal name |
J Extracell Vesicles
|
Publication year |
2021 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Immunofluorescence Flow cytomtery |
|
|
12 |
Experiment ID |
398 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD9|TSG101|CD63
|
Enriched markers |
✔
GOLGA2|CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
33738083
|
Organism |
Homo sapiens |
Experiment description |
Bioorthogonally surface-edited extracellular vesicles based on metabolic glycoengineering for CD44-mediated targeting of inflammatory diseases |
Authors |
"Lim GT, You DG, Han HS, Lee H, Shin S, Oh BH, Kumar EKP, Um W, Kim CH, Han S, Lee S, Lim S, Yoon HY, Kim K, Kwon IC, Jo DG, Cho YW, Park JH" |
Journal name |
J Extracell Vesicles
|
Publication year |
2021 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Immunofluorescence Flow cytomtery |
|
|
13 |
Experiment ID |
412 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX|ACTB
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Breast cancer cells |
Sample name |
MCF7 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
14 |
Experiment ID |
1181 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
TSG101|CD81|FLOT1
|
Enriched markers |
✘
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
32848136
|
Organism |
Homo sapiens |
Experiment description |
ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells |
Authors |
"Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S." |
Journal name |
Nat Commun
|
Publication year |
2020 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 |
Isolation/purification methods |
Differential centrifugation Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
15 |
Experiment ID |
1182 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
TSG101|CD81|FLOT1
|
Enriched markers |
✘
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
32848136
|
Organism |
Homo sapiens |
Experiment description |
ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells |
Authors |
"Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S." |
Journal name |
Nat Commun
|
Publication year |
2020 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 |
Isolation/purification methods |
Differential centrifugation Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
16 |
Experiment ID |
1183 |
MISEV standards |
✘
|
Biophysical techniques |
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
32848136
|
Organism |
Homo sapiens |
Experiment description |
ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells |
Authors |
"Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S." |
Journal name |
Nat Commun
|
Publication year |
2020 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 - Fraction 1 |
Isolation/purification methods |
Differential centrifugation OptiPrep density gradient centrifugation Ultracentrifugation |
Flotation density |
1.05 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting |
|
|
17 |
Experiment ID |
1184 |
MISEV standards |
✘
|
Biophysical techniques |
✔
TSG101|FLOT1|CD81
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
32848136
|
Organism |
Homo sapiens |
Experiment description |
ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells |
Authors |
"Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S." |
Journal name |
Nat Commun
|
Publication year |
2020 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 - Fraction 5 |
Isolation/purification methods |
Differential centrifugation OptiPrep density gradient centrifugation Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting |
|
|
18 |
Experiment ID |
1185 |
MISEV standards |
✘
|
Biophysical techniques |
✔
TSG101|FLOT1|CD81
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
32848136
|
Organism |
Homo sapiens |
Experiment description |
ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells |
Authors |
"Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S." |
Journal name |
Nat Commun
|
Publication year |
2020 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 - Fraction 6 |
Isolation/purification methods |
Differential centrifugation OptiPrep density gradient centrifugation Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting |
|
|
19 |
Experiment ID |
1186 |
MISEV standards |
✘
|
Biophysical techniques |
✔
TSG101|FLOT1|CD81
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
32848136
|
Organism |
Homo sapiens |
Experiment description |
ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells |
Authors |
"Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S." |
Journal name |
Nat Commun
|
Publication year |
2020 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 - Fraction 7 |
Isolation/purification methods |
Differential centrifugation OptiPrep density gradient centrifugation Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting |
|
|
20 |
Experiment ID |
1187 |
MISEV standards |
✘
|
Biophysical techniques |
✔
FLOT1|CD81
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
32848136
|
Organism |
Homo sapiens |
Experiment description |
ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells |
Authors |
"Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S." |
Journal name |
Nat Commun
|
Publication year |
2020 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 - Fraction 8 |
Isolation/purification methods |
Differential centrifugation OptiPrep density gradient centrifugation Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting |
|
|
21 |
Experiment ID |
1188 |
MISEV standards |
✘
|
Biophysical techniques |
✔
FLOT1
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
32848136
|
Organism |
Homo sapiens |
Experiment description |
ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells |
Authors |
"Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S." |
Journal name |
Nat Commun
|
Publication year |
2020 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 - Fraction 9 |
Isolation/purification methods |
Differential centrifugation OptiPrep density gradient centrifugation Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting |
|
|
22 |
Experiment ID |
1192 |
MISEV standards |
✘
|
Biophysical techniques |
✔
FLOT1
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
32848136
|
Organism |
Homo sapiens |
Experiment description |
ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells |
Authors |
"Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S." |
Journal name |
Nat Commun
|
Publication year |
2020 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 - Fraction 5 |
Isolation/purification methods |
Differential centrifugation OptiPrep density gradient centrifugation Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting |
|
|
23 |
Experiment ID |
1193 |
MISEV standards |
✘
|
Biophysical techniques |
✔
TSG101|FLOT1|CD81
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
32848136
|
Organism |
Homo sapiens |
Experiment description |
ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells |
Authors |
"Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S." |
Journal name |
Nat Commun
|
Publication year |
2020 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 - Fraction 6 |
Isolation/purification methods |
Differential centrifugation OptiPrep density gradient centrifugation Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting |
|
|
24 |
Experiment ID |
1194 |
MISEV standards |
✘
|
Biophysical techniques |
✔
FLOT1
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
32848136
|
Organism |
Homo sapiens |
Experiment description |
ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells |
Authors |
"Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S." |
Journal name |
Nat Commun
|
Publication year |
2020 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 - Fraction 7 |
Isolation/purification methods |
Differential centrifugation OptiPrep density gradient centrifugation Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting |
|
|
25 |
Experiment ID |
1195 |
MISEV standards |
✘
|
Biophysical techniques |
✔
FLOT1
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
32848136
|
Organism |
Homo sapiens |
Experiment description |
ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells |
Authors |
"Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S." |
Journal name |
Nat Commun
|
Publication year |
2020 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 - Fraction 8 |
Isolation/purification methods |
Differential centrifugation OptiPrep density gradient centrifugation Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting |
|
|
26 |
Experiment ID |
1196 |
MISEV standards |
✘
|
Biophysical techniques |
✔
FLOT1
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
32848136
|
Organism |
Homo sapiens |
Experiment description |
ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells |
Authors |
"Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S." |
Journal name |
Nat Commun
|
Publication year |
2020 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 - Fraction 9 |
Isolation/purification methods |
Differential centrifugation OptiPrep density gradient centrifugation Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting |
|
|
27 |
Experiment ID |
1197 |
MISEV standards |
✘
|
Biophysical techniques |
✔
TSG101|CD81|FLOT1
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
32848136
|
Organism |
Homo sapiens |
Experiment description |
ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells |
Authors |
"Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S." |
Journal name |
Nat Commun
|
Publication year |
2020 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 |
Isolation/purification methods |
Differential centrifugation Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting |
|
|
28 |
Experiment ID |
1198 |
MISEV standards |
✘
|
Biophysical techniques |
✔
TSG101|CD81|FLOT1
|
Enriched markers |
✘
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
32848136
|
Organism |
Homo sapiens |
Experiment description |
ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells |
Authors |
"Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S." |
Journal name |
Nat Commun
|
Publication year |
2020 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 |
Isolation/purification methods |
Differential centrifugation Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting |
|
|
29 |
Experiment ID |
46 |
MISEV standards |
✔
EM|IEM
|
Biophysical techniques |
✔
HSC70|CD63|MHCII|CD81|CD86
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
17641064
|
Organism |
Homo sapiens |
Experiment description |
Exosomes with immune modulatory features are present in human breast milk. |
Authors |
"Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S" |
Journal name |
JIMMU
|
Publication year |
2007 |
Sample |
Breast milk |
Sample name |
Breast milk - Colostrum |
Isolation/purification methods |
Differential centrifugation Filtration Sucrose density gradient |
Flotation density |
1.10-1.18 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry [QSTAR] Western blotting Immunoelectron Microscopy FACS |
|
|
30 |
Experiment ID |
48 |
MISEV standards |
✔
EM|IEM
|
Biophysical techniques |
✔
HSC70|CD63|CD86|MHCII
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
17641064
|
Organism |
Homo sapiens |
Experiment description |
Exosomes with immune modulatory features are present in human breast milk. |
Authors |
"Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S" |
Journal name |
JIMMU
|
Publication year |
2007 |
Sample |
Breast milk |
Sample name |
Breast milk - Mature milk |
Isolation/purification methods |
Differential centrifugation Filtration Sucrose density gradient |
Flotation density |
1.10-1.18 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry [QSTAR] Western blotting Immunoelectron Microscopy FACS |
|
|
31 |
Experiment ID |
388 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD63|CD9
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Western blotting
|
PubMed ID |
33767144
|
Organism |
Homo sapiens |
Experiment description |
Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells |
Authors |
"Bonsergent E, Grisard E, Buchrieser J, Schwartz O, Théry C, Lavieu G." |
Journal name |
Nat Commun
|
Publication year |
2021 |
Sample |
Cervical cancer cells |
Sample name |
HeLa |
Isolation/purification methods |
Differential centrifugation Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting |
|
|
32 |
Experiment ID |
494 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD9|CD81|CD151|CD63|CD82|FLOT1|FLOT2|GAPDH|LAMP1|LAMP2|SDCBP|TFRC|TSG101
|
Enriched markers |
✘
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
| | | |