Gene ontology annotations for SDCBP2
Experiment description of studies that identified SDCBP2 in exosomes
1
Experiment ID
76
MISEV standards
✔
EM
EV Biophysical techniques
✔
TSG101|GAPDH|HSP90|CD81|CD9|CD63|LAMP1|MHCI
EV Enriched markers
✔
HSP90B1
EV Negative markers
✘
EV Particle analysis
Identified molecule
protein
Identification method
Mass spectrometry
PubMed ID
20224111
Organism
Homo sapiens
Experiment description
Proteomics analysis of bladder cancer exosomes.
Authors
Welton JL, Khanna S, Giles PJ, Brennan P, Brewis IA, Staffurth J, Mason MD, Clayton A.
Journal name
MCP
Publication year
2010
Sample
Bladder cancer cells
Sample name
HT1376
Isolation/purification methods
Differential centrifugation Sucrose density gradient
Flotation density
1.10-1.19 g/mL
Molecules identified in the study
Protein
Methods used in the study
Mass spectrometry [MALDI TOF/TOF] Western blotting FACS
2
Experiment ID
21
MISEV standards
✔
EM|IEM
EV Biophysical techniques
✔
Alix|TSG101|HSP70|CD63
EV Enriched markers
✘
EV Negative markers
✘
EV Particle analysis
Identified molecule
protein
Identification method
PubMed ID
19837982
Organism
Homo sapiens
Experiment description
Proteomic and bioinformatic analysis of immunoaffinity-purified exosomes derived from the human colon tumor cell line LIM1215.
Authors
Suresh Mathivanan, Justin W.E. Lim, Bow J. Tauro, Hong Ji, Robert L. Moritz and Richard J. Simpson
Journal name
MCP
Publication year
2009
Sample
Colorectal cancer cells
Sample name
LIM1215
Isolation/purification methods
Filtration Ultracentrifugation Sucrose density gradient
Flotation density
1.10-1.12 g/mL
Molecules identified in the study
Protein
Methods used in the study
Mass spectrometry [Orbitrap] Western blotting
3
Experiment ID
207
MISEV standards
✔
EM
EV Biophysical techniques
✔
TSG101|HSP70|FLOT1
EV Enriched markers
✔
VDAC
EV Negative markers
✔
NTA
EV Particle analysis
Identified molecule
protein
Identification method
Mass spectrometry
PubMed ID
23161513
Organism
Homo sapiens
Experiment description
Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS.
Authors
Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC, Coffey RJ.
Journal name
Mol Cell Proteomics
Publication year
2012
Sample
Colorectal cancer cells
Sample name
DKO-1
Isolation/purification methods
Differential centrifugation Filtration
Flotation density
-
Molecules identified in the study
Protein
Methods used in the study
Mass spectrometry
4
Experiment ID
208
MISEV standards
✔
EM
EV Biophysical techniques
✔
TSG101|HSP70|FLOT1
EV Enriched markers
✔
VDAC
EV Negative markers
✔
NTA
EV Particle analysis
Identified molecule
protein
Identification method
Mass spectrometry
PubMed ID
23161513
Organism
Homo sapiens
Experiment description
Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS.
Authors
Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC, Coffey RJ.
Journal name
Mol Cell Proteomics
Publication year
2012
Sample
Colorectal cancer cells
Sample name
Dks-8
Isolation/purification methods
Differential centrifugation Filtration
Flotation density
-
Molecules identified in the study
Protein
Methods used in the study
Mass spectrometry
5
Experiment ID
209
MISEV standards
✘
EV Biophysical techniques
✔
TSG101|HSP70|FLOT1
EV Enriched markers
✔
VDAC
EV Negative markers
✔
NTA
EV Particle analysis
Identified molecule
protein
Identification method
Mass spectrometry
PubMed ID
23161513
Organism
Homo sapiens
Experiment description
Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS.
Authors
Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC, Coffey RJ.
Journal name
Mol Cell Proteomics
Publication year
2012
Sample
Colorectal cancer cells
Sample name
DLD-1
Isolation/purification methods
Differential centrifugation Filtration
Flotation density
-
Molecules identified in the study
Protein
Methods used in the study
Mass spectrometry
6
Experiment ID
282
MISEV standards
✔
CEM
EV Biophysical techniques
✔
Alix|TSG101|CD63|CD81|EpCAM
EV Enriched markers
✘
EV Negative markers
✔
DLS
EV Particle analysis
Identified molecule
protein
Identification method
Mass spectrometry
PubMed ID
25890246
Organism
Homo sapiens
Experiment description
Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct.
Authors
Xu R, Greening DW, Rai A, Ji H, Simpson RJ.
Journal name
Methods
Publication year
2015
Sample
Colorectal cancer cells
Sample name
LIM1863 - Ultracentrifugation - Rep 1
Isolation/purification methods
Differential centrifugation Filtration Ultracentrifugation Centrifugal concentration
Flotation density
-
Molecules identified in the study
Protein
Methods used in the study
Mass spectrometry Western blotting
7
Experiment ID
283
MISEV standards
✔
CEM
EV Biophysical techniques
✔
Alix|TSG101|CD63|CD81|EpCAM
EV Enriched markers
✘
EV Negative markers
✔
DLS
EV Particle analysis
Identified molecule
protein
Identification method
Mass spectrometry
PubMed ID
25890246
Organism
Homo sapiens
Experiment description
Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct.
Authors
Xu R, Greening DW, Rai A, Ji H, Simpson RJ.
Journal name
Methods
Publication year
2015
Sample
Colorectal cancer cells
Sample name
LIM1863 - Ultracentrifugation - Rep 2
Isolation/purification methods
Differential centrifugation Filtration Ultracentrifugation Centrifugal concentration
Flotation density
-
Molecules identified in the study
Protein
Methods used in the study
Mass spectrometry Western blotting
8
Experiment ID
285
MISEV standards
✔
CEM
EV Biophysical techniques
✔
Alix|TSG101|CD63|CD81|EpCAM
EV Enriched markers
✘
EV Negative markers
✔
DLS
EV Particle analysis
Identified molecule
protein
Identification method
Mass spectrometry
PubMed ID
25890246
Organism
Homo sapiens
Experiment description
Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct.
Authors
Xu R, Greening DW, Rai A, Ji H, Simpson RJ.
Journal name
Methods
Publication year
2015
Sample
Colorectal cancer cells
Sample name
LIM1863 - Sequential centrifugal ultrafiltration - Rep 1
Isolation/purification methods
Differential centrifugation Filtration Sequential centrifugal ultrafiltration Centrifugal concentration
Flotation density
-
Molecules identified in the study
Protein
Methods used in the study
Mass spectrometry Western blotting
9
Experiment ID
286
MISEV standards
✔
CEM
EV Biophysical techniques
✔
Alix|TSG101|CD63|CD81|EpCAM
EV Enriched markers
✘
EV Negative markers
✔
DLS
EV Particle analysis
Identified molecule
protein
Identification method
Mass spectrometry
PubMed ID
25890246
Organism
Homo sapiens
Experiment description
Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct.
Authors
Xu R, Greening DW, Rai A, Ji H, Simpson RJ.
Journal name
Methods
Publication year
2015
Sample
Colorectal cancer cells
Sample name
LIM1863 - Sequential centrifugal ultrafiltration - Rep 2
Isolation/purification methods
Differential centrifugation Filtration Sequential centrifugal ultrafiltration Centrifugal concentration
Flotation density
-
Molecules identified in the study
Protein
Methods used in the study
Mass spectrometry Western blotting
10
Experiment ID
1203
MISEV standards
✔
EM
EV Biophysical techniques
✔
SDCBP|FLOT1|CD9|CD81|CD63|EPCAM|GAPDH|LAMP1|TFRC|CD151|CD82|LAMP2|RAB35|TSG101|FLOT2|RAB5B|ICAM1|RAB5A
EV Enriched markers
✘
EV Negative markers
✘
EV Particle analysis
Identified molecule
protein
Identification method
Mass spectrometry
PubMed ID
34887515
Organism
Homo sapiens
Experiment description
Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets
Authors
Zhang Q, Jeppesen DK, Higginbotham JN, Graves-Deal R, Trinh VQ, Ramirez MA, Sohn Y, Neininger AC, Taneja N, McKinley ET, Niitsu H, Cao Z, Evans R, Glass SE, Ray KC, Fissell WH, Hill S, Rose KL, Huh WJ, Washington MK, Ayers GD, Burnette DT, Sharma S, Rome LH, Franklin JL, Lee YA, Liu Q, Coffey RJ.
Journal name
Nat Cell Biol
Publication year
2021
Sample
Colorectal cancer cells
Sample name
DiFi
Isolation/purification methods
Differential centrifugation Filtration Centrifugal ultrafiltration Ultracentrifugation OptiPrep density gradient centrifugation
Flotation density
-
Molecules identified in the study
Protein miRNA
Methods used in the study
Western blotting Mass spectrometry RNA sequencing
11
Experiment ID
63
MISEV standards
✘
EV Biophysical techniques
✔
AQP2
EV Enriched markers
✘
EV Negative markers
✘
EV Particle analysis
Identified molecule
protein
Identification method
Mass spectrometry
PubMed ID
19056867
Organism
Homo sapiens
Experiment description
Large-scale proteomics and phosphoproteomics of urinary exosomes.
Authors
Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R, Wang NS, Knepper MA
Journal name
JASN
Publication year
2009
Sample
Urine
Sample name
Urine - Normal
Isolation/purification methods
Differential centrifugation
Flotation density
-
Molecules identified in the study
Protein
Methods used in the study
Mass spectrometry [LTQ] Western blotting
Protein-protein interactions for SDCBP2
Protein Interactor
ExoCarta ID
Identification method
PubMed
Species
1
DPPA2
Two-hybrid
Homo sapiens
2
PS1D
Two-hybrid
Homo sapiens
3
TIFA
Two-hybrid
Homo sapiens
4
C1orf35
Two-hybrid
Homo sapiens
5
DKFZp564J157
Two-hybrid
Homo sapiens
6
PAFAH1B3
5050
Two-hybrid
Homo sapiens
7
SDCBP2
27111
Affinity Capture-MS
Homo sapiens
Affinity Capture-MS
Homo sapiens
8
BEND7
222389
Two-hybrid
Homo sapiens
View the network
image/svg+xml
Pathways in which SDCBP2 is involved
No pathways found