Gene ontology annotations for APOO |
|
Experiment description of studies that identified APOO in exosomes |
1 |
Experiment ID |
489 |
MISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
Cd9|Cd81|Cd63|Gapdh|Sdcbp|Lamp1|Aqp1|Rab5a|Icam1|Cd82|Itga2b|Tsg101|Lamp2|Rab35|Flot1|Flot2|Cd151|Rab5b|Tfrc|Uchl1
|
EV Enriched markers |
✔
Canx
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Rattus norvegicus |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ. |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Bone marrow mesenchymal stem cells |
Sample name |
BMSC - Passage 6 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
2 |
Experiment ID |
490 |
MISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
Cd9|Cd81|Cd63|Gapdh|Sdcbp|Lamp1|Aqp1|Rab5a|Icam1|Cd82|Itga2b|Tsg101|Lamp2|Rab35|Flot1|Flot2|Cd151|Rab5b|Tfrc|Uchl1
|
EV Enriched markers |
✔
Canx
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Rattus norvegicus |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ. |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Bone marrow mesenchymal stem cells |
Sample name |
BMSC - Passage 7 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
3 |
Experiment ID |
491 |
MISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
Cd9|Cd81|Cd63|Gapdh|Sdcbp|Lamp1|Aqp1|Rab5a|Icam1|Cd82|Itga2b|Tsg101|Lamp2|Rab35|Flot1|Flot2|Cd151|Rab5b|Tfrc|Uchl1
|
EV Enriched markers |
✔
Canx
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Rattus norvegicus |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ. |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Bone marrow mesenchymal stem cells |
Sample name |
BMSC - Passage 8 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
4 |
Experiment ID |
492 |
MISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
Cd9|Cd81|Cd63|Gapdh|Sdcbp|Lamp1|Aqp1|Rab5a|Icam1|Cd82|Itga2b|Tsg101|Lamp2|Rab35|Flot1|Flot2|Cd151|Rab5b|Tfrc|Uchl1
|
EV Enriched markers |
✔
Canx
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Rattus norvegicus |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ. |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Bone marrow mesenchymal stem cells |
Sample name |
BMSC - Passage 9 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
5 |
Experiment ID |
234 |
MISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101|Alix|HSC70|GAPDH
|
EV Enriched markers |
✔
HSP90B1
|
EV Negative markers |
✔
qNano
|
EV Particle analysis
|
|
Identified molecule |
mRNA
|
Identification method |
RNA Sequencing
|
PubMed ID |
26054723
|
Organism |
Homo sapiens |
Experiment description |
Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs |
Authors |
He M, Qin H, Poon TC, Sze SC, Ding X, Co NN, Ngai SM, Chan TF, Wong N |
Journal name |
Carcinogenesis
|
Publication year |
2015 |
Sample |
Hepatocellular carcinoma cells |
Sample name |
HKCI-C3 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Sucrose density gradient |
Flotation density |
1.13-1.19 g/mL
|
Molecules identified in the study |
Protein RNA |
Methods used in the study |
Western blotting Mass spectrometry RT-PCR RNA Sequencing |
|
|
6 |
Experiment ID |
235 |
MISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101|Alix|HSC70|GAPDH
|
EV Enriched markers |
✔
HSP90B1
|
EV Negative markers |
✔
qNano
|
EV Particle analysis
|
|
Identified molecule |
mRNA
|
Identification method |
RNA Sequencing
|
PubMed ID |
26054723
|
Organism |
Homo sapiens |
Experiment description |
Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs |
Authors |
He M, Qin H, Poon TC, Sze SC, Ding X, Co NN, Ngai SM, Chan TF, Wong N |
Journal name |
Carcinogenesis
|
Publication year |
2015 |
Sample |
Hepatocellular carcinoma cells |
Sample name |
HKCI-8 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Sucrose density gradient |
Flotation density |
1.13-1.19 g/mL
|
Molecules identified in the study |
Protein RNA |
Methods used in the study |
Western blotting Mass spectrometry RT-PCR RNA Sequencing |
|
|
7 |
Experiment ID |
236 |
MISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101|Alix|HSC70|GAPDH
|
EV Enriched markers |
✔
HSP90B1
|
EV Negative markers |
✔
qNano
|
EV Particle analysis
|
|
Identified molecule |
mRNA
|
Identification method |
RNA Sequencing
|
PubMed ID |
26054723
|
Organism |
Homo sapiens |
Experiment description |
Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs |
Authors |
He M, Qin H, Poon TC, Sze SC, Ding X, Co NN, Ngai SM, Chan TF, Wong N |
Journal name |
Carcinogenesis
|
Publication year |
2015 |
Sample |
Hepatocellular carcinoma cells |
Sample name |
MHCC97L |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Sucrose density gradient |
Flotation density |
1.13-1.19 g/mL
|
Molecules identified in the study |
Protein RNA |
Methods used in the study |
Western blotting Mass spectrometry RT-PCR RNA Sequencing |
|
|
8 |
Experiment ID |
237 |
MISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101|Alix|HSC70|GAPDH
|
EV Enriched markers |
✔
HSP90B1
|
EV Negative markers |
✔
qNano
|
EV Particle analysis
|
|
Identified molecule |
mRNA
|
Identification method |
RNA Sequencing
|
PubMed ID |
26054723
|
Organism |
Homo sapiens |
Experiment description |
Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs |
Authors |
He M, Qin H, Poon TC, Sze SC, Ding X, Co NN, Ngai SM, Chan TF, Wong N |
Journal name |
Carcinogenesis
|
Publication year |
2015 |
Sample |
Hepatocytes |
Sample name |
MIHA |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Sucrose density gradient |
Flotation density |
1.13-1.19 g/mL
|
Molecules identified in the study |
Protein RNA |
Methods used in the study |
Western blotting Mass spectrometry RNA Sequencing |
|
|
Protein-protein interactions for APOO |
|
Protein Interactor |
ExoCarta ID |
Identification method |
PubMed |
Species |
No interactions are found.
|
|
Pathways in which APOO is involved |
No pathways found
|
|
|