Gene ontology annotations for ATP5J |
|
Experiment description of studies that identified ATP5J in exosomes |
1 |
Experiment ID |
489 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
Cd9|Cd81|Cd63|Gapdh|Sdcbp|Lamp1|Aqp1|Rab5a|Icam1|Cd82|Itga2b|Tsg101|Lamp2|Rab35|Flot1|Flot2|Cd151|Rab5b|Tfrc|Uchl1
|
Enriched markers |
✔
Canx
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Rattus norvegicus |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
"Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ." |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Bone marrow mesenchymal stem cells |
Sample name |
BMSC - Passage 6 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
2 |
Experiment ID |
490 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
Cd9|Cd81|Cd63|Gapdh|Sdcbp|Lamp1|Aqp1|Rab5a|Icam1|Cd82|Itga2b|Tsg101|Lamp2|Rab35|Flot1|Flot2|Cd151|Rab5b|Tfrc|Uchl1
|
Enriched markers |
✔
Canx
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Rattus norvegicus |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
"Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ." |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Bone marrow mesenchymal stem cells |
Sample name |
BMSC - Passage 7 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
3 |
Experiment ID |
491 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
Cd9|Cd81|Cd63|Gapdh|Sdcbp|Lamp1|Aqp1|Rab5a|Icam1|Cd82|Itga2b|Tsg101|Lamp2|Rab35|Flot1|Flot2|Cd151|Rab5b|Tfrc|Uchl1
|
Enriched markers |
✔
Canx
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Rattus norvegicus |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
"Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ." |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Bone marrow mesenchymal stem cells |
Sample name |
BMSC - Passage 8 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
4 |
Experiment ID |
492 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
Cd9|Cd81|Cd63|Gapdh|Sdcbp|Lamp1|Aqp1|Rab5a|Icam1|Cd82|Itga2b|Tsg101|Lamp2|Rab35|Flot1|Flot2|Cd151|Rab5b|Tfrc|Uchl1
|
Enriched markers |
✔
Canx
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Rattus norvegicus |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
"Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ." |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Bone marrow mesenchymal stem cells |
Sample name |
BMSC - Passage 9 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
5 |
Experiment ID |
412 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX|ACTB
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Breast cancer cells |
Sample name |
MCF7 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
6 |
Experiment ID |
414 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
7 |
Experiment ID |
426 |
MISEV standards |
✘
|
Biophysical techniques |
✔
SDCBP|FLOT1|CD81|CD9|CD151|FLOT2|TSG101|LAMP1|TFRC|RAB5A|RAB35|GAPDH|UCHL1|ICAM1
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 - Exo-rich fractions 7-10 pooled |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Size exclusion chromatography |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
8 |
Experiment ID |
427 |
MISEV standards |
✘
|
Biophysical techniques |
✔
CD81|SDCBP|FLOT1|CD9|CD151|FLOT2|TSG101|LAMP1|TFRC|RAB5A|RAB35|GAPDH|UCHL1|ICAM1
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 - Exo-rich fractions 1-6 pooled |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation OptiPrep density gradient centrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
9 |
Experiment ID |
407 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD9|CD63|CD81|SDCBP|TSG101|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Embryonic kidney cells |
Sample name |
HEK293T |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
10 |
Experiment ID |
419 |
MISEV standards |
✘
|
Biophysical techniques |
✔
SDCBP|FLOT1|CD81|CD9|CD151|FLOT2|TSG101|LAMP1|TFRC|RAB5A|RAB35|GAPDH|UCHL1|ICAM1
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Embryonic kidney cells |
Sample name |
HEK293T - Exo-rich fractions 7-10 pooled |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Size exclusion chromatography |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
11 |
Experiment ID |
419 |
MISEV standards |
✘
|
Biophysical techniques |
✔
SDCBP|FLOT1|CD81|CD9|CD151|FLOT2|TSG101|LAMP1|TFRC|RAB5A|RAB35|GAPDH|UCHL1|ICAM1
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Embryonic kidney cells |
Sample name |
HEK293T - Exo-rich fractions 7-10 pooled |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Size exclusion chromatography |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
12 |
Experiment ID |
420 |
MISEV standards |
✘
|
Biophysical techniques |
✔
CD81|SDCBP|FLOT1|CD9|CD151|FLOT2|TSG101|LAMP1|TFRC|RAB5A|RAB35|GAPDH|UCHL1|ICAM1
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Embryonic kidney cells |
Sample name |
HEK293T - Exo-rich fractions 1-6 pooled |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation OptiPrep density gradient centrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
13 |
Experiment ID |
420 |
MISEV standards |
✘
|
Biophysical techniques |
✔
CD81|SDCBP|FLOT1|CD9|CD151|FLOT2|TSG101|LAMP1|TFRC|RAB5A|RAB35|GAPDH|UCHL1|ICAM1
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Embryonic kidney cells |
Sample name |
HEK293T - Exo-rich fractions 1-6 pooled |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation OptiPrep density gradient centrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
14 |
Experiment ID |
405 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD9|CD63|CD81|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Foreskin fibroblasts |
Sample name |
BJ |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
15 |
Experiment ID |
417 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD63|SDCBP|LAMP1|CD9|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX|ACTB
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Lymphoma cells |
Sample name |
Raji |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
16 |
Experiment ID |
411 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Mammary cancer-associated fibroblasts |
Sample name |
mCAF |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
17 |
Experiment ID |
418 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Monocytic leukemia cells |
Sample name |
THP-1 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
18 |
Experiment ID |
418 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Monocytic leukemia cells |
Sample name |
THP-1 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
19 |
Experiment ID |
413 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Normal mammary epithelial cells |
Sample name |
MCF10A |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
20 |
Experiment ID |
406 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35|CD81
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Pancreatic cancer cells |
Sample name |
BxPC3 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
21 |
Experiment ID |
415 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Pancreatic cancer cells |
Sample name |
PANC-1 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
22 |
Experiment ID |
434 |
MISEV standards |
✘
|
Biophysical techniques |
✔
SDCBP|FLOT1|CD81|CD9|CD151|FLOT2|TSG101|LAMP1|TFRC|RAB5A|RAB35|GAPDH|UCHL1|ICAM1
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Pancreatic cancer cells |
Sample name |
PANC-1 - Exo-rich fractions 7-10 pooled |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Size exclusion chromatography |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
23 |
Experiment ID |
435 |
MISEV standards |
✘
|
Biophysical techniques |
✔
CD81|SDCBP|FLOT1|CD9|CD151|FLOT2|TSG101|LAMP1|TFRC|RAB5A|RAB35|GAPDH|UCHL1|ICAM1
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Pancreatic cancer cells |
Sample name |
PANC-1 - Exo-rich fractions 1-6 pooled |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation OptiPrep density gradient centrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
24 |
Experiment ID |
408 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD9|CD63|CD81|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX|ACTB
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Pancreatic duct epithalial cells |
Sample name |
HPDE |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
25 |
Experiment ID |
409 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD63|SDCBP|LAMP1|CD9|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Pancreatic duct epithalial cells |
Sample name |
HPNE |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
26 |
Experiment ID |
416 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Pluripotent stem cells |
Sample name |
PSC |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
27 |
Experiment ID |
410 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD63|SDCBP|LAMP1|CD9|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
T lymphocytes |
Sample name |
Jurkat |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
Protein-protein interactions for ATP5J |
|
Protein Interactor |
ExoCarta ID |
Identification method |
PubMed |
Species |
1 |
STARD3NL |
83930 |
Affinity Capture-MS |
 |
Homo sapiens |
|
2 |
PDHA1 |
5160 |
Proximity Label-MS |
 |
Homo sapiens |
|
3 |
PEX13 |
|
Affinity Capture-MS |
 |
Homo sapiens |
|
4 |
SLIRP |
81892 |
Proximity Label-MS |
 |
Homo sapiens |
|
5 |
FOXA1 |
|
Affinity Capture-MS |
 |
Homo sapiens |
|
6 |
UQCRFS1 |
7386 |
Co-fractionation |
 |
Homo sapiens |
|
7 |
ATPIF1 |
93974 |
Affinity Capture-MS |
 |
Homo sapiens |
Affinity Capture-MS |
 |
Homo sapiens |
|
8 |
CLIP1 |
6249 |
Affinity Capture-MS |
 |
Homo sapiens |
|
9 |
DERL2 |
51009 |
Affinity Capture-MS |
 |
Homo sapiens |
|
10 |
FKBP7 |
51661 |
Co-fractionation |
 |
Homo sapiens |
|
11 |
TMEM161A |
|
Affinity Capture-MS |
 |
Homo sapiens |
|
12 |
DHCR24 |
1718 |
Affinity Capture-MS |
 |
Homo sapiens |
|
13 |
COX15 |
1355 |
Affinity Capture-MS |
 |
Homo sapiens |
|
14 |
TRUB2 |
|
Proximity Label-MS |
 |
Homo sapiens |
|
15 |
MTG2 |
|
Proximity Label-MS |
 |
Homo sapiens |
|
16 |
SLC35F1 |
|
Affinity Capture-MS |
 |
Homo sapiens |
|
17 |
PTPN9 |
5780 |
Two-hybrid |
 |
Homo sapiens |
|
18 |
NDUFA4 |
4697 |
Affinity Capture-MS |
 |
Homo sapiens |
|
19 |
PARK7 |
11315 |
Co-fractionation |
 |
Homo sapiens |
|
20 |
MTRF1 |
|
Proximity Label-MS |
 |
Homo sapiens |
|
21 |
GFM2 |
84340 |
Proximity Label-MS |
 |
Homo sapiens |
|
22 |
CCDC90B |
|
Proximity Label-MS |
 |
Homo sapiens |
|
23 |
ATP5L |
10632 |
Affinity Capture-MS |
 |
Homo sapiens |
|
24 |
LRPPRC |
10128 |
Proximity Label-MS |
 |
Homo sapiens |
|
25 |
KIAA1429 |
25962 |
Affinity Capture-MS |
 |
Homo sapiens |
|
26 |
RPS6KA3 |
6197 |
Two-hybrid |
 |
Homo sapiens |
|
27 |
ATP5D |
513 |
Co-fractionation |
 |
Homo sapiens |
Affinity Capture-MS |
 |
Homo sapiens |
|
28 |
FIS1 |
51024 |
Proximity Label-MS |
 |
Homo sapiens |
|
29 |
CDC16 |
8881 |
Affinity Capture-MS |
 |
Homo sapiens |
|
30 |
NDUFS3 |
4722 |
Affinity Capture-MS |
 |
Homo sapiens |
|
31 |
CRYZ |
1429 |
Proximity Label-MS |
 |
Homo sapiens |
|
32 |
TFAM |
7019 |
Proximity Label-MS |
 |
Homo sapiens |
|
33 |
PMPCA |
23203 |
Proximity Label-MS |
 |
Homo sapiens |
|
34 |
COQ9 |
|
Affinity Capture-MS |
 |
Homo sapiens |
|
35 |
PTPMT1 |
114971 |
Affinity Capture-MS |
 |
Homo sapiens |
|
36 |
CHCHD2 |
|
Affinity Capture-MS |
 |
Homo sapiens |
|
37 |
TMEM87A |
25963 |
Affinity Capture-MS |
 |
Homo sapiens |
|
38 |
PRC1 |
9055 |
Affinity Capture-MS |
 |
Homo sapiens |
|
39 |
HINT2 |
84681 |
Proximity Label-MS |
 |
Homo sapiens |
|
40 |
TFEB |
|
Affinity Capture-MS |
 |
Homo sapiens |
|
41 |
MRPS26 |
64949 |
Proximity Label-MS |
 |
Homo sapiens |
|
42 |
SURF1 |
|
Proximity Label-MS |
 |
Homo sapiens |
|
43 |
ATP5O |
539 |
Co-fractionation |
 |
Homo sapiens |
Co-fractionation |
 |
Homo sapiens |
Co-fractionation |
 |
Homo sapiens |
Affinity Capture-MS |
 |
Homo sapiens |
|
44 |
EXD2 |
|
Proximity Label-MS |
 |
Homo sapiens |
|
45 |
ORMDL2 |
29095 |
Affinity Capture-MS |
 |
Homo sapiens |
|
46 |
F2RL1 |
|
Affinity Capture-MS |
 |
Homo sapiens |
|
47 |
ATP5H |
10476 |
Co-fractionation |
 |
Homo sapiens |
Cross-Linking-MS (XL-MS) |
 |
Homo sapiens |
Cross-Linking-MS (XL-MS) |
 |
Homo sapiens |
Cross-Linking-MS (XL-MS) |
 |
Homo sapiens |
Cross-Linking-MS (XL-MS) |
 |
Homo sapiens |
Affinity Capture-MS |
 |
Homo sapiens |
|
48 |
SIGLEC12 |
|
Two-hybrid |
 |
Homo sapiens |
|
49 |
PMPCB |
9512 |
Proximity Label-MS |
 |
Homo sapiens |
|
50 |
TACO1 |
|
Proximity Label-MS |
 |
Homo sapiens |
|
51 |
MOSPD3 |
|
Two-hybrid |
 |
Homo sapiens |
|
52 |
VWA8 |
23078 |
Proximity Label-MS |
 |
Homo sapiens |
|
53 |
MTERF3 |
|
Proximity Label-MS |
 |
Homo sapiens |
|
54 |
MDH2 |
4191 |
Proximity Label-MS |
 |
Homo sapiens |
|
55 |
RB1 |
5925 |
Negative Genetic |
 |
Homo sapiens |
|
56 |
TMEM120A |
83862 |
Affinity Capture-MS |
 |
Homo sapiens |
|
57 |
ZMYM3 |
|
Affinity Capture-MS |
 |
Homo sapiens |
|
58 |
ATP5A1 |
498 |
Affinity Capture-MS |
 |
Homo sapiens |
Affinity Capture-MS |
 |
Homo sapiens |
|
59 |
C6orf203 |
|
Proximity Label-MS |
 |
Homo sapiens |
|
60 |
HIST1H4A |
8359 |
Affinity Capture-MS |
 |
Homo sapiens |
|
61 |
FASTKD5 |
|
Proximity Label-MS |
 |
Homo sapiens |
|
62 |
ATP8 |
|
Affinity Capture-MS |
 |
Homo sapiens |
|
63 |
RALA |
5898 |
Affinity Capture-MS |
 |
Homo sapiens |
|
64 |
TUFM |
7284 |
Proximity Label-MS |
 |
Homo sapiens |
|
65 |
ITGB3BP |
|
Affinity Capture-MS |
 |
Homo sapiens |
|
66 |
CERS2 |
29956 |
Affinity Capture-MS |
 |
Homo sapiens |
|
67 |
KDSR |
2531 |
Affinity Capture-MS |
 |
Homo sapiens |
|
68 |
Atp5a1 |
11946 |
Affinity Capture-MS |
 |
Mus musculus |
|
69 |
HSCB |
150274 |
Proximity Label-MS |
 |
Homo sapiens |
|
70 |
SLC43A3 |
29015 |
Affinity Capture-MS |
 |
Homo sapiens |
|
71 |
BCL2L2 |
599 |
Two-hybrid |
 |
Homo sapiens |
|
72 |
SCAMP2 |
10066 |
Affinity Capture-MS |
 |
Homo sapiens |
|
73 |
CCDC109B |
55013 |
Proximity Label-MS |
 |
Homo sapiens |
|
74 |
REEP6 |
|
Two-hybrid |
 |
Homo sapiens |
|
75 |
RDH11 |
51109 |
Affinity Capture-MS |
 |
Homo sapiens |
|
76 |
TBRG4 |
9238 |
| | | |