Gene ontology annotations for SLIRP |
|
Experiment description of studies that identified SLIRP in exosomes |
1 |
Experiment ID |
489 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
Cd9|Cd81|Cd63|Gapdh|Sdcbp|Lamp1|Aqp1|Rab5a|Icam1|Cd82|Itga2b|Tsg101|Lamp2|Rab35|Flot1|Flot2|Cd151|Rab5b|Tfrc|Uchl1
|
Enriched markers |
✔
Canx
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Rattus norvegicus |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
"Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ." |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Bone marrow mesenchymal stem cells |
Sample name |
BMSC - Passage 6 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
2 |
Experiment ID |
490 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
Cd9|Cd81|Cd63|Gapdh|Sdcbp|Lamp1|Aqp1|Rab5a|Icam1|Cd82|Itga2b|Tsg101|Lamp2|Rab35|Flot1|Flot2|Cd151|Rab5b|Tfrc|Uchl1
|
Enriched markers |
✔
Canx
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Rattus norvegicus |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
"Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ." |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Bone marrow mesenchymal stem cells |
Sample name |
BMSC - Passage 7 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
3 |
Experiment ID |
491 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
Cd9|Cd81|Cd63|Gapdh|Sdcbp|Lamp1|Aqp1|Rab5a|Icam1|Cd82|Itga2b|Tsg101|Lamp2|Rab35|Flot1|Flot2|Cd151|Rab5b|Tfrc|Uchl1
|
Enriched markers |
✔
Canx
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Rattus norvegicus |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
"Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ." |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Bone marrow mesenchymal stem cells |
Sample name |
BMSC - Passage 8 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
4 |
Experiment ID |
492 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
Cd9|Cd81|Cd63|Gapdh|Sdcbp|Lamp1|Aqp1|Rab5a|Icam1|Cd82|Itga2b|Tsg101|Lamp2|Rab35|Flot1|Flot2|Cd151|Rab5b|Tfrc|Uchl1
|
Enriched markers |
✔
Canx
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Rattus norvegicus |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
"Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ." |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Bone marrow mesenchymal stem cells |
Sample name |
BMSC - Passage 9 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
5 |
Experiment ID |
412 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX|ACTB
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Breast cancer cells |
Sample name |
MCF7 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
6 |
Experiment ID |
414 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
7 |
Experiment ID |
426 |
MISEV standards |
✘
|
Biophysical techniques |
✔
SDCBP|FLOT1|CD81|CD9|CD151|FLOT2|TSG101|LAMP1|TFRC|RAB5A|RAB35|GAPDH|UCHL1|ICAM1
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 - Exo-rich fractions 7-10 pooled |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Size exclusion chromatography |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
8 |
Experiment ID |
427 |
MISEV standards |
✘
|
Biophysical techniques |
✔
CD81|SDCBP|FLOT1|CD9|CD151|FLOT2|TSG101|LAMP1|TFRC|RAB5A|RAB35|GAPDH|UCHL1|ICAM1
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Breast cancer cells |
Sample name |
MDA-MB-231 - Exo-rich fractions 1-6 pooled |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation OptiPrep density gradient centrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
9 |
Experiment ID |
407 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD9|CD63|CD81|SDCBP|TSG101|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Embryonic kidney cells |
Sample name |
HEK293T |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
10 |
Experiment ID |
419 |
MISEV standards |
✘
|
Biophysical techniques |
✔
SDCBP|FLOT1|CD81|CD9|CD151|FLOT2|TSG101|LAMP1|TFRC|RAB5A|RAB35|GAPDH|UCHL1|ICAM1
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Embryonic kidney cells |
Sample name |
HEK293T - Exo-rich fractions 7-10 pooled |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Size exclusion chromatography |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
11 |
Experiment ID |
419 |
MISEV standards |
✘
|
Biophysical techniques |
✔
SDCBP|FLOT1|CD81|CD9|CD151|FLOT2|TSG101|LAMP1|TFRC|RAB5A|RAB35|GAPDH|UCHL1|ICAM1
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Embryonic kidney cells |
Sample name |
HEK293T - Exo-rich fractions 7-10 pooled |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Size exclusion chromatography |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
12 |
Experiment ID |
420 |
MISEV standards |
✘
|
Biophysical techniques |
✔
CD81|SDCBP|FLOT1|CD9|CD151|FLOT2|TSG101|LAMP1|TFRC|RAB5A|RAB35|GAPDH|UCHL1|ICAM1
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Embryonic kidney cells |
Sample name |
HEK293T - Exo-rich fractions 1-6 pooled |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation OptiPrep density gradient centrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
13 |
Experiment ID |
420 |
MISEV standards |
✘
|
Biophysical techniques |
✔
CD81|SDCBP|FLOT1|CD9|CD151|FLOT2|TSG101|LAMP1|TFRC|RAB5A|RAB35|GAPDH|UCHL1|ICAM1
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Embryonic kidney cells |
Sample name |
HEK293T - Exo-rich fractions 1-6 pooled |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation OptiPrep density gradient centrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
14 |
Experiment ID |
405 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD9|CD63|CD81|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Foreskin fibroblasts |
Sample name |
BJ |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
15 |
Experiment ID |
417 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD63|SDCBP|LAMP1|CD9|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX|ACTB
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Lymphoma cells |
Sample name |
Raji |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
16 |
Experiment ID |
411 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Mammary cancer-associated fibroblasts |
Sample name |
mCAF |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
17 |
Experiment ID |
488 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD9|CD81|CD63|GAPDH|SDCBP|LAMP1|TFRC|UCHL1|FLOT2|LAMP2|FLOT1|ICAM1|RAB5B|CD151|RAB35|TSG101|RAB5A|CD82
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
36408942
|
Organism |
Homo sapiens |
Experiment description |
Quantitative proteomic analysis of exosomes from umbilical cord mesenchymal stem cells and rat bone marrow stem cells |
Authors |
"Xu X, Yin F, Guo M, Gan G, Lin G, Wen C, Wang J, Song P, Wang J, Qi ZQ, Zhong CQ." |
Journal name |
Proteomics
|
Publication year |
2023 |
Sample |
Mesenchymal stem cells |
Sample name |
UCMSC |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectometry |
|
|
18 |
Experiment ID |
418 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Monocytic leukemia cells |
Sample name |
THP-1 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
19 |
Experiment ID |
418 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Monocytic leukemia cells |
Sample name |
THP-1 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
20 |
Experiment ID |
413 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Normal mammary epithelial cells |
Sample name |
MCF10A |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
21 |
Experiment ID |
406 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35|CD81
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Pancreatic cancer cells |
Sample name |
BxPC3 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
22 |
Experiment ID |
415 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Pancreatic cancer cells |
Sample name |
PANC-1 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
23 |
Experiment ID |
434 |
MISEV standards |
✘
|
Biophysical techniques |
✔
SDCBP|FLOT1|CD81|CD9|CD151|FLOT2|TSG101|LAMP1|TFRC|RAB5A|RAB35|GAPDH|UCHL1|ICAM1
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Pancreatic cancer cells |
Sample name |
PANC-1 - Exo-rich fractions 7-10 pooled |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Size exclusion chromatography |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
24 |
Experiment ID |
435 |
MISEV standards |
✘
|
Biophysical techniques |
✔
CD81|SDCBP|FLOT1|CD9|CD151|FLOT2|TSG101|LAMP1|TFRC|RAB5A|RAB35|GAPDH|UCHL1|ICAM1
|
Enriched markers |
✔
CANX
|
Negative markers |
✘
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Pancreatic cancer cells |
Sample name |
PANC-1 - Exo-rich fractions 1-6 pooled |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation OptiPrep density gradient centrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
25 |
Experiment ID |
408 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD9|CD63|CD81|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX|ACTB
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Pancreatic duct epithalial cells |
Sample name |
HPDE |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
26 |
Experiment ID |
409 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD63|SDCBP|LAMP1|CD9|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Pancreatic duct epithalial cells |
Sample name |
HPNE |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
27 |
Experiment ID |
416 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD9|CD63|SDCBP|LAMP1|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
Pluripotent stem cells |
Sample name |
PSC |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
28 |
Experiment ID |
410 |
MISEV standards |
✔
EM
|
Biophysical techniques |
✔
CD81|CD63|SDCBP|LAMP1|CD9|GAPDH|FLOT1|TFRC|FLOT2|TSG101|RAB35
|
Enriched markers |
✔
CANX
|
Negative markers |
✔
NTA
|
Particle analysis
|
|
Identified molecule |
Protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
34108659
|
Organism |
Homo sapiens |
Experiment description |
Quantitative Proteomics Identifies the Core Proteome of Exosomes with Syntenin-1 as the highest abundant protein and a Putative Universal Biomarker |
Authors |
"Kugeratski FG, Hodge K, Lilla S, McAndrews KM, Zhou X, Hwang RF, Zanivan S, Kalluri R." |
Journal name |
Nat Cell Biol
|
Publication year |
2021 |
Sample |
T lymphocytes |
Sample name |
Jurkat |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein mRNA |
Methods used in the study |
RT-qPCR Western blotting Mass spectrometry Flow cytometry |
|
|
Protein-protein interactions for SLIRP |
|
Protein Interactor |
ExoCarta ID |
Identification method |
PubMed |
Species |
1 |
UBE2H |
7328 |
Affinity Capture-MS |
|
Homo sapiens |
|
2 |
MRPS27 |
23107 |
Proximity Label-MS |
|
Homo sapiens |
|
3 |
AFG3L2 |
10939 |
Proximity Label-MS |
|
Homo sapiens |
|
4 |
PYCR2 |
29920 |
Proximity Label-MS |
|
Homo sapiens |
|
5 |
IGF2BP1 |
10642 |
Proximity Label-MS |
|
Homo sapiens |
|
6 |
PQBP1 |
|
Co-fractionation |
|
Homo sapiens |
|
7 |
PMPCA |
23203 |
Proximity Label-MS |
|
Homo sapiens |
|
8 |
MRPL48 |
|
Proximity Label-MS |
|
Homo sapiens |
|
9 |
RBPMS |
11030 |
Two-hybrid |
|
Homo sapiens |
|
10 |
MRPS18B |
28973 |
Proximity Label-MS |
|
Homo sapiens |
|
11 |
Cdh1 |
12550 |
Affinity Capture-MS |
|
Mus musculus |
|
12 |
RIN3 |
|
Affinity Capture-MS |
|
Homo sapiens |
|
13 |
MRPS10 |
55173 |
Proximity Label-MS |
|
Homo sapiens |
|
14 |
ADRB2 |
|
Affinity Capture-MS |
|
Homo sapiens |
|
15 |
FASTKD5 |
|
Proximity Label-MS |
|
Homo sapiens |
Proximity Label-MS |
|
Homo sapiens |
|
16 |
MTG2 |
|
Proximity Label-MS |
|
Homo sapiens |
|
17 |
NGRN |
|
Proximity Label-MS |
|
Homo sapiens |
|
18 |
ARHGAP42 |
|
Affinity Capture-MS |
|
Homo sapiens |
|
19 |
MRPL10 |
124995 |
Proximity Label-MS |
|
Homo sapiens |
|
20 |
ETFB |
2109 |
Proximity Label-MS |
|
Homo sapiens |
|
21 |
CSNK2A1 |
1457 |
Biochemical Activity |
|
Homo sapiens |
|
22 |
MRPL50 |
54534 |
Proximity Label-MS |
|
Homo sapiens |
|
23 |
PNMAL1 |
|
Affinity Capture-MS |
|
Homo sapiens |
|
24 |
HNRNPR |
10236 |
Co-fractionation |
|
Homo sapiens |
Proximity Label-MS |
|
Homo sapiens |
|
25 |
MRRF |
|
Co-fractionation |
|
Homo sapiens |
Proximity Label-MS |
|
Homo sapiens |
|
26 |
PDHB |
5162 |
Proximity Label-MS |
|
Homo sapiens |
|
27 |
MRPL49 |
740 |
Proximity Label-MS |
|
Homo sapiens |
|
28 |
MRPL44 |
|
Proximity Label-MS |
|
Homo sapiens |
|
29 |
CCDC102B |
|
Two-hybrid |
|
Homo sapiens |
|
30 |
MTRF1 |
|
Proximity Label-MS |
|
Homo sapiens |
|
31 |
SBDS |
51119 |
Co-fractionation |
|
Homo sapiens |
|
32 |
CCDC90B |
|
Proximity Label-MS |
|
Homo sapiens |
|
33 |
ALAS1 |
|
Proximity Label-MS |
|
Homo sapiens |
|
34 |
LRPPRC |
10128 |
Affinity Capture-MS |
|
Homo sapiens |
Proximity Label-MS |
|
Homo sapiens |
Proximity Label-MS |
|
Homo sapiens |
Affinity Capture-MS |
|
Homo sapiens |
|
35 |
WTAP |
9589 |
Affinity Capture-MS |
|
Homo sapiens |
Two-hybrid |
|
Homo sapiens |
|
36 |
TRUB2 |
|
Proximity Label-MS |
|
Homo sapiens |
|
37 |
PLEKHG4 |
|
Affinity Capture-MS |
|
Homo sapiens |
|
38 |
ATP5D |
513 |
Proximity Label-MS |
|
Homo sapiens |
|
39 |
SNRNP70 |
6625 |
Co-fractionation |
|
Homo sapiens |
|
40 |
MRPL20 |
55052 |
Proximity Label-MS |
|
Homo sapiens |
|
41 |
NDUFS3 |
4722 |
Proximity Label-MS |
|
Homo sapiens |
|
42 |
B3GNT2 |
10678 |
Affinity Capture-MS |
|
Homo sapiens |
|
43 |
OGDH |
4967 |
Proximity Label-MS |
|
Homo sapiens |
|
44 |
TFAM |
7019 |
Proximity Label-MS |
|
Homo sapiens |
|
45 |
MRPS31 |
|
Proximity Label-MS |
|
Homo sapiens |
|
46 |
KIF23 |
9493 |
Affinity Capture-MS |
|
Homo sapiens |
|
47 |
C8orf82 |
|
Proximity Label-MS |
|
Homo sapiens |
|
48 |
NDUFA7 |
4701 |
Proximity Label-MS |
|
Homo sapiens |
|
49 |
WDR83 |
|
Affinity Capture-MS |
|
Homo sapiens |
|
50 |
MRPS5 |
64969 |
Proximity Label-MS |
|
Homo sapiens |
|
51 |
HINT2 |
84681 |
Proximity Label-MS |
|
Homo sapiens |
Proximity Label-MS |
|
Homo sapiens |
|
52 |
MRPS23 |
51649 |
Proximity Label-MS |
|
Homo sapiens |
|
53 |
MRPS24 |
64951 |
Proximity Label-MS |
|
Homo sapiens |
|
54 |
COA3 |
28958 |
Affinity Capture-Western |
|
Homo sapiens |
|
55 |
CALM3 |
808 |
Affinity Capture-MS |
|
Homo sapiens |
|
56 |
SNRPC |
6631 |
Co-fractionation |
|
Homo sapiens |
|
57 |
ETFA |
2108 |
Proximity Label-MS |
|
Homo sapiens |
|
58 |
C11orf74 |
|
Affinity Capture-MS |
|
Homo sapiens |
|
59 |
MTUS2 |
23281 |
Two-hybrid |
|
Homo sapiens |
|
60 |
MYCN |
|
Affinity Capture-MS |
|
Homo sapiens |
|
61 |
Cenpe |
|
Affinity Capture-MS |
|
Mus musculus |
|
62 |
KRT31 |
3881 |
Two-hybrid |
|
Homo sapiens |
|
63 |
POLRMT |
5442 |
Proximity Label-MS |
|
Homo sapiens |
|
64 |
Kctd5 |
|
Affinity Capture-MS |
|
Mus musculus |
|
65 |
EXD2 |
|
Proximity Label-MS |
|
Homo sapiens |
|
66 |
ERAL1 |
|
Proximity Label-MS |
|
Homo sapiens |
|
67 |
DGCR2 |
9993 |
Affinity Capture-MS |
|
Homo sapiens |
|
68 |
NDUFV1 |
4723 |
Proximity Label-MS |
|
Homo sapiens |
|
69 |
MRPL55 |
|
Proximity Label-MS |
|
Homo sapiens |
| | | |