Experiment description of studies that identified HMGB1 in exosomes |
1 |
Experiment ID |
282 |
ISEV standards |
✔
CEM
|
EV Biophysical techniques |
✔
Alix|TSG101
|
EV Cytosolic markers |
✔
CD63|CD81|EpCAM
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
DLS
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25890246
|
Organism |
Homo sapiens |
Experiment description |
Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. |
Authors |
Xu R, Greening DW, Rai A, Ji H, Simpson RJ. |
Journal name |
Methods
|
Publication year |
2015 |
Sample |
Colorectal cancer cells |
Sample name |
LIM1863 - Ultracentrifugation - Rep 1 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Centrifugal concentration |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry Western blotting |
|
|
2 |
Experiment ID |
283 |
ISEV standards |
✔
CEM
|
EV Biophysical techniques |
✔
Alix|TSG101
|
EV Cytosolic markers |
✔
CD63|CD81|EpCAM
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
DLS
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25890246
|
Organism |
Homo sapiens |
Experiment description |
Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. |
Authors |
Xu R, Greening DW, Rai A, Ji H, Simpson RJ. |
Journal name |
Methods
|
Publication year |
2015 |
Sample |
Colorectal cancer cells |
Sample name |
LIM1863 - Ultracentrifugation - Rep 2 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Centrifugal concentration |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry Western blotting |
|
|
3 |
Experiment ID |
285 |
ISEV standards |
✔
CEM
|
EV Biophysical techniques |
✔
Alix|TSG101
|
EV Cytosolic markers |
✔
CD63|CD81|EpCAM
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
DLS
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25890246
|
Organism |
Homo sapiens |
Experiment description |
Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. |
Authors |
Xu R, Greening DW, Rai A, Ji H, Simpson RJ. |
Journal name |
Methods
|
Publication year |
2015 |
Sample |
Colorectal cancer cells |
Sample name |
LIM1863 - Sequential centrifugal ultrafiltration - Rep 1 |
Isolation/purification methods |
Differential centrifugation Filtration Sequential centrifugal ultrafiltration Centrifugal concentration |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry Western blotting |
|
|
4 |
Experiment ID |
286 |
ISEV standards |
✔
CEM
|
EV Biophysical techniques |
✔
Alix|TSG101
|
EV Cytosolic markers |
✔
CD63|CD81|EpCAM
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
DLS
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25890246
|
Organism |
Homo sapiens |
Experiment description |
Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. |
Authors |
Xu R, Greening DW, Rai A, Ji H, Simpson RJ. |
Journal name |
Methods
|
Publication year |
2015 |
Sample |
Colorectal cancer cells |
Sample name |
LIM1863 - Sequential centrifugal ultrafiltration - Rep 2 |
Isolation/purification methods |
Differential centrifugation Filtration Sequential centrifugal ultrafiltration Centrifugal concentration |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry Western blotting |
|
|
5 |
Experiment ID |
224 |
ISEV standards |
✔
EM|AFM
|
EV Biophysical techniques |
✔
Alix|TSG101
|
EV Cytosolic markers |
✔
CD63|CD81
|
EV Membrane markers |
✔
GOLGA2
|
EV Negative markers |
✘
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25944692
|
Organism |
Homo sapiens |
Experiment description |
Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes |
Authors |
Keerthikumar S, Gangoda L, Liem M, Fonseka P, Atukorala I, Ozcitti C, Mechler A, Adda CG, Ang CS, Mathivanan S |
Journal name |
Oncotarget
|
Publication year |
2015 |
Sample |
Neuroblastoma cells |
Sample name |
SH-SY5Y |
Isolation/purification methods |
Differential centrifugation Ultracentrifugation OptiPrep density gradient |
Flotation density |
1.10 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry Western blotting |
|
|
6 |
Experiment ID |
211 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101|Alix
|
EV Cytosolic markers |
✔
EpCAM|TFRC
|
EV Membrane markers |
✔
cytochrome c|GOLGA2
|
EV Negative markers |
✘
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
23333927
|
Organism |
Homo sapiens |
Experiment description |
Characterization and proteomic analysis of ovarian cancer-derived exosomes. |
Authors |
Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X, Shen K. |
Journal name |
J Proteomics
|
Publication year |
2013 |
Sample |
Ovarian cancer cells |
Sample name |
IGROV1 |
Isolation/purification methods |
Differential centrifugation Ultracentrifugation Sucrose density gradient |
Flotation density |
1.09-1.15 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
7 |
Experiment ID |
212 |
ISEV standards |
✔
CEM
|
EV Biophysical techniques |
✔
TSG101|Alix
|
EV Cytosolic markers |
✔
EpCAM|TFRC
|
EV Membrane markers |
✔
Cytochrome C|GOLGA2
|
EV Negative markers |
✘
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
23333927
|
Organism |
Homo sapiens |
Experiment description |
Characterization and proteomic analysis of ovarian cancer-derived exosomes. |
Authors |
Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X, Shen K. |
Journal name |
J Proteomics
|
Publication year |
2013 |
Sample |
Ovarian cancer cells |
Sample name |
OVCAR-3 |
Isolation/purification methods |
Differential centrifugation Ultracentrifugation Sucrose density gradient |
Flotation density |
1.09-1.15 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
8 |
Experiment ID |
191 |
ISEV standards |
✘
|
EV Biophysical techniques |
✔
Alix
|
EV Cytosolic markers |
✔
CD81|CD9
|
EV Membrane markers |
✘
|
EV Negative markers |
✘
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
20124223
|
Organism |
Homo sapiens |
Experiment description |
Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. |
Authors |
Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, Lim SK, Sze SK. |
Journal name |
Mol Cell Proteomics
|
Publication year |
2010 |
Sample |
Squamous carcinoma cells |
Sample name |
Squamous carcinoma cell (A431) |
Isolation/purification methods |
Differential centrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|