Gene ontology annotations for HIST1H1E |
|
Experiment description of studies that identified HIST1H1E in exosomes |
1 |
Experiment ID |
282 |
ISEV standards |
✔
CEM
|
EV Biophysical techniques |
✔
Alix|TSG101
|
EV Cytosolic markers |
✔
CD63|CD81|EpCAM
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
DLS
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25890246
|
Organism |
Homo sapiens |
Experiment description |
Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. |
Authors |
Xu R, Greening DW, Rai A, Ji H, Simpson RJ. |
Journal name |
Methods
|
Publication year |
2015 |
Sample |
Colorectal cancer cells |
Sample name |
LIM1863 - Ultracentrifugation - Rep 1 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Centrifugal concentration |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry Western blotting |
|
|
2 |
Experiment ID |
283 |
ISEV standards |
✔
CEM
|
EV Biophysical techniques |
✔
Alix|TSG101
|
EV Cytosolic markers |
✔
CD63|CD81|EpCAM
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
DLS
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25890246
|
Organism |
Homo sapiens |
Experiment description |
Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. |
Authors |
Xu R, Greening DW, Rai A, Ji H, Simpson RJ. |
Journal name |
Methods
|
Publication year |
2015 |
Sample |
Colorectal cancer cells |
Sample name |
LIM1863 - Ultracentrifugation - Rep 2 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Centrifugal concentration |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry Western blotting |
|
|
3 |
Experiment ID |
285 |
ISEV standards |
✔
CEM
|
EV Biophysical techniques |
✔
Alix|TSG101
|
EV Cytosolic markers |
✔
CD63|CD81|EpCAM
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
DLS
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25890246
|
Organism |
Homo sapiens |
Experiment description |
Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. |
Authors |
Xu R, Greening DW, Rai A, Ji H, Simpson RJ. |
Journal name |
Methods
|
Publication year |
2015 |
Sample |
Colorectal cancer cells |
Sample name |
LIM1863 - Sequential centrifugal ultrafiltration - Rep 1 |
Isolation/purification methods |
Differential centrifugation Filtration Sequential centrifugal ultrafiltration Centrifugal concentration |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry Western blotting |
|
|
4 |
Experiment ID |
286 |
ISEV standards |
✔
CEM
|
EV Biophysical techniques |
✔
Alix|TSG101
|
EV Cytosolic markers |
✔
CD63|CD81|EpCAM
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
DLS
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25890246
|
Organism |
Homo sapiens |
Experiment description |
Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. |
Authors |
Xu R, Greening DW, Rai A, Ji H, Simpson RJ. |
Journal name |
Methods
|
Publication year |
2015 |
Sample |
Colorectal cancer cells |
Sample name |
LIM1863 - Sequential centrifugal ultrafiltration - Rep 2 |
Isolation/purification methods |
Differential centrifugation Filtration Sequential centrifugal ultrafiltration Centrifugal concentration |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry Western blotting |
|
|
5 |
Experiment ID |
226 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
GAPDH
|
EV Cytosolic markers |
✔
CD9|FLOT1
|
EV Membrane markers |
✔
LMNA|H2AFX|ATP5A1|TOMM20
|
EV Negative markers |
✘
|
EV Particle analysis
|
|
Identified molecule |
mRNA
|
Identification method |
Small RNA sequencing (Illumina HiSeq 2000 (Solexa)
|
PubMed ID |
26027894
|
Organism |
Homo sapiens |
Experiment description |
Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting |
Authors |
Bas W. M. van Balkom, Almut S. Eisele, D. Michiel Pegtel, Sander Bervoets, Marianne C. Verhaar |
Journal name |
Journal of Extracellular Vesicles
|
Publication year |
2015 |
Sample |
Endothelial cells |
Sample name |
HMEC-1 |
Isolation/purification methods |
Differential ultracentrifugation Sucrose density gradient |
Flotation density |
1.10 g/mL
|
Molecules identified in the study |
miRNA Protein snoRNA lncRNA yRNA snRNA mRNA ncRNA mtRNA vtRNA scaRNA lincRNA |
Methods used in the study |
Small RNA sequencing (Illumina HiSeq 2000 (Solexa) Western blotting |
|
|
6 |
Experiment ID |
234 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101|Alix|HSC70|GAPDH
|
EV Cytosolic markers |
✘
|
EV Membrane markers |
✔
HSP90B1
|
EV Negative markers |
✔
qNano
|
EV Particle analysis
|
|
Identified molecule |
mRNA
|
Identification method |
RNA Sequencing
|
PubMed ID |
26054723
|
Organism |
Homo sapiens |
Experiment description |
Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs |
Authors |
He M, Qin H, Poon TC, Sze SC, Ding X, Co NN, Ngai SM, Chan TF, Wong N |
Journal name |
Carcinogenesis
|
Publication year |
2015 |
Sample |
Hepatocellular carcinoma cells |
Sample name |
HKCI-C3 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Sucrose density gradient |
Flotation density |
1.13-1.19 g/mL
|
Molecules identified in the study |
Protein RNA |
Methods used in the study |
Western blotting Mass spectrometry RT-PCR RNA Sequencing |
|
|
7 |
Experiment ID |
235 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101|Alix|HSC70|GAPDH
|
EV Cytosolic markers |
✘
|
EV Membrane markers |
✔
HSP90B1
|
EV Negative markers |
✔
qNano
|
EV Particle analysis
|
|
Identified molecule |
mRNA
|
Identification method |
RNA Sequencing
|
PubMed ID |
26054723
|
Organism |
Homo sapiens |
Experiment description |
Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs |
Authors |
He M, Qin H, Poon TC, Sze SC, Ding X, Co NN, Ngai SM, Chan TF, Wong N |
Journal name |
Carcinogenesis
|
Publication year |
2015 |
Sample |
Hepatocellular carcinoma cells |
Sample name |
HKCI-8 |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Sucrose density gradient |
Flotation density |
1.13-1.19 g/mL
|
Molecules identified in the study |
Protein RNA |
Methods used in the study |
Western blotting Mass spectrometry RT-PCR RNA Sequencing |
|
|
8 |
Experiment ID |
236 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101|Alix|HSC70|GAPDH
|
EV Cytosolic markers |
✘
|
EV Membrane markers |
✔
HSP90B1
|
EV Negative markers |
✔
qNano
|
EV Particle analysis
|
|
Identified molecule |
mRNA
|
Identification method |
RNA Sequencing
|
PubMed ID |
26054723
|
Organism |
Homo sapiens |
Experiment description |
Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs |
Authors |
He M, Qin H, Poon TC, Sze SC, Ding X, Co NN, Ngai SM, Chan TF, Wong N |
Journal name |
Carcinogenesis
|
Publication year |
2015 |
Sample |
Hepatocellular carcinoma cells |
Sample name |
MHCC97L |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Sucrose density gradient |
Flotation density |
1.13-1.19 g/mL
|
Molecules identified in the study |
Protein RNA |
Methods used in the study |
Western blotting Mass spectrometry RT-PCR RNA Sequencing |
|
|
9 |
Experiment ID |
237 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101|Alix|HSC70|GAPDH
|
EV Cytosolic markers |
✘
|
EV Membrane markers |
✔
HSP90B1
|
EV Negative markers |
✔
qNano
|
EV Particle analysis
|
|
Identified molecule |
mRNA
|
Identification method |
RNA Sequencing
|
PubMed ID |
26054723
|
Organism |
Homo sapiens |
Experiment description |
Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs |
Authors |
He M, Qin H, Poon TC, Sze SC, Ding X, Co NN, Ngai SM, Chan TF, Wong N |
Journal name |
Carcinogenesis
|
Publication year |
2015 |
Sample |
Hepatocytes |
Sample name |
MIHA |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation Sucrose density gradient |
Flotation density |
1.13-1.19 g/mL
|
Molecules identified in the study |
Protein RNA |
Methods used in the study |
Western blotting Mass spectrometry RNA Sequencing |
|
|
10 |
Experiment ID |
254 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101
|
EV Cytosolic markers |
✔
FLOT1|CD81
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25950383
|
Organism |
Homo sapiens |
Experiment description |
Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines |
Authors |
Lazar I, Clement E, Ducoux-Petit M, Denat L, Soldan V, Dauvillier S, Balor S4, Burlet-Schiltz O1, Larue L, Muller C Nieto L |
Journal name |
Pigment Cell Melanoma Res
|
Publication year |
2015 |
Sample |
Melanoma cells |
Sample name |
MNT-1 |
Isolation/purification methods |
Differential centrifugation Unltracentrifugation Sucrose density gradient |
Flotation density |
1.13 - 1.19 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
11 |
Experiment ID |
255 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101
|
EV Cytosolic markers |
✔
FLOT1
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25950383
|
Organism |
Homo sapiens |
Experiment description |
Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines |
Authors |
Lazar I, Clement E, Ducoux-Petit M, Denat L, Soldan V, Dauvillier S, Balor S4, Burlet-Schiltz O1, Larue L, Muller C Nieto L |
Journal name |
Pigment Cell Melanoma Res
|
Publication year |
2015 |
Sample |
Melanoma cells |
Sample name |
G1 |
Isolation/purification methods |
Differential centrifugation Unltracentrifugation Sucrose density gradient |
Flotation density |
1.13 - 1.19 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
12 |
Experiment ID |
256 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101
|
EV Cytosolic markers |
✔
FLOT1
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25950383
|
Organism |
Homo sapiens |
Experiment description |
Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines |
Authors |
Lazar I, Clement E, Ducoux-Petit M, Denat L, Soldan V, Dauvillier S, Balor S4, Burlet-Schiltz O1, Larue L, Muller C Nieto L |
Journal name |
Pigment Cell Melanoma Res
|
Publication year |
2015 |
Sample |
Melanoma cells |
Sample name |
501mel |
Isolation/purification methods |
Differential centrifugation Unltracentrifugation Sucrose density gradient |
Flotation density |
1.13 - 1.19 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
13 |
Experiment ID |
257 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101
|
EV Cytosolic markers |
✔
FLOT1
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25950383
|
Organism |
Homo sapiens |
Experiment description |
Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines |
Authors |
Lazar I, Clement E, Ducoux-Petit M, Denat L, Soldan V, Dauvillier S, Balor S4, Burlet-Schiltz O1, Larue L, Muller C Nieto L |
Journal name |
Pigment Cell Melanoma Res
|
Publication year |
2015 |
Sample |
Melanoma cells |
Sample name |
Daju |
Isolation/purification methods |
Differential centrifugation Unltracentrifugation Sucrose density gradient |
Flotation density |
1.13 - 1.19 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
14 |
Experiment ID |
258 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101
|
EV Cytosolic markers |
✔
FLOT1|CD81
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25950383
|
Organism |
Homo sapiens |
Experiment description |
Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines |
Authors |
Lazar I, Clement E, Ducoux-Petit M, Denat L, Soldan V, Dauvillier S, Balor S4, Burlet-Schiltz O1, Larue L, Muller C Nieto L |
Journal name |
Pigment Cell Melanoma Res
|
Publication year |
2015 |
Sample |
Melanoma cells |
Sample name |
SKMEL28 |
Isolation/purification methods |
Differential centrifugation Unltracentrifugation Sucrose density gradient |
Flotation density |
1.13 - 1.19 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Western blotting Mass spectrometry |
|
|
15 |
Experiment ID |
224 |
ISEV standards |
✔
EM|AFM
|
EV Biophysical techniques |
✔
Alix|TSG101
|
EV Cytosolic markers |
✔
CD63|CD81
|
EV Membrane markers |
✔
GOLGA2
|
EV Negative markers |
✘
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25944692
|
Organism |
Homo sapiens |
Experiment description |
Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes |
Authors |
Keerthikumar S, Gangoda L, Liem M, Fonseka P, Atukorala I, Ozcitti C, Mechler A, Adda CG, Ang CS, Mathivanan S |
Journal name |
Oncotarget
|
Publication year |
2015 |
Sample |
Neuroblastoma cells |
Sample name |
SH-SY5Y |
Isolation/purification methods |
Differential centrifugation Ultracentrifugation OptiPrep density gradient |
Flotation density |
1.10 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry Western blotting |
|
|
16 |
Experiment ID |
211 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101|Alix
|
EV Cytosolic markers |
✔
EpCAM|TFRC
|
EV Membrane markers |
✔
cytochrome c|GOLGA2
|
EV Negative markers |
✘
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
23333927
|
Organism |
Homo sapiens |
Experiment description |
Characterization and proteomic analysis of ovarian cancer-derived exosomes. |
Authors |
Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X, Shen K. |
Journal name |
J Proteomics
|
Publication year |
2013 |
Sample |
Ovarian cancer cells |
Sample name |
IGROV1 |
Isolation/purification methods |
Differential centrifugation Ultracentrifugation Sucrose density gradient |
Flotation density |
1.09-1.15 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
17 |
Experiment ID |
212 |
ISEV standards |
✔
CEM
|
EV Biophysical techniques |
✔
TSG101|Alix
|
EV Cytosolic markers |
✔
EpCAM|TFRC
|
EV Membrane markers |
✔
Cytochrome C|GOLGA2
|
EV Negative markers |
✘
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
23333927
|
Organism |
Homo sapiens |
Experiment description |
Characterization and proteomic analysis of ovarian cancer-derived exosomes. |
Authors |
Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X, Shen K. |
Journal name |
J Proteomics
|
Publication year |
2013 |
Sample |
Ovarian cancer cells |
Sample name |
OVCAR-3 |
Isolation/purification methods |
Differential centrifugation Ultracentrifugation Sucrose density gradient |
Flotation density |
1.09-1.15 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
18 |
Experiment ID |
275 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101|Alix|RAB5A
|
EV Cytosolic markers |
✔
CD9|CD82|CD63|CD81
|
EV Membrane markers |
✔
AIF
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
25844599
|
Organism |
Homo sapiens |
Experiment description |
Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel. |
Authors |
Kharaziha P, Chioureas D, Rutishauser D, Baltatzis G, Lennartsson L, Fonseca P, Azimi A, Hultenby K, Zubarev R, Ullen A, Yachnin J, Nilsson S, Panaretakis T. |
Journal name |
Oncotarget
|
Publication year |
2015 |
Sample |
Prostate cancer cells |
Sample name |
DU145 - Docetaxel sensitive |
Isolation/purification methods |
Filtration Ultracentrifugation Sucrose density gradient |
Flotation density |
1.12-1.19 g/mL
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry/Flow cytometry/Western blotting |
|
|
19 |
Experiment ID |
217 |
ISEV standards |
✔
EM
|
EV Biophysical techniques |
✔
TSG101
|
EV Cytosolic markers |
✔
CD81|CD9|CD63
|
EV Membrane markers |
✘
|
EV Negative markers |
✔
NTA
|
EV Particle analysis
|
|
Identified molecule |
protein
|
Identification method |
Mass spectrometry
|
PubMed ID |
23844026
|
Organism |
Homo sapiens |
Experiment description |
Characterization of human thymic exosomes. |
Authors |
Skogberg G, Gudmundsdottir J, van der Post S, Sandstrom K, Bruhn S, Benson M, Mincheva-Nilsson L, Baranov V, Telemo E, Ekwall O. |
Journal name |
PLoS One
|
Publication year |
2013 |
Sample |
Thymus |
Sample name |
Normal-Thymus |
Isolation/purification methods |
Differential centrifugation Filtration Ultracentrifugation |
Flotation density |
-
|
Molecules identified in the study |
Protein |
Methods used in the study |
Mass spectrometry |
|
|
Protein-protein interactions for HIST1H1E |
|
Protein Interactor |
ExoCarta ID |
Identification method |
PubMed |
Species |
No interactions are found.
|
|
Pathways in which HIST1H1E is involved |
|
|
|